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For infinite Gaussian unitary ensemble random matrices the probability density functionSnn(t) for the
nearest neighbor eignenvalue spacing~as distinct from the spacing between consecutive eigenvalues! is com-
puted in terms of the solution of a certain nonlinear equation, which generalizes thes form of the Painleve´
V equation. Comparison is made with the empirical value ofSnn(t) for the zeros of the Riemannz function on
the critical line, including data from 106consecutive zeros near zero number 1020. @S1063-651X~96!50111-X#

PACS number~s!: 05.45.1b, 03.65.2w

Random matrix theory successfully predicts many fea-
tures of the statistical properties of the energy levels of clas-
sically chaotic quantum systems~see, e.g., Refs.@1,2#!. One
such statistical property is the probability density function
~PDF!, p(s) say, for the spacing between consecutive energy
levels. Jimboet al. @3# ~see Ref.@4# for subsequent deriva-
tions! proved that for the Gaussian unitary ensemble~GUE!
of infinite dimensional random matrices, scaled so that the
mean eigenvalue spacing is 1/r, p(s) is given by

p~s!5
1

r

d2

ds2
exp E

0

prss~s8!

s8
ds8, ~1!

wheres(s) satisfies thes form of the Painleve´ V equation

~ss9!214~ss82s!@ss82s1~s8!2#50, ~2!

subject to the boundary conditions(s);2s/p2(s/p)2 as
s→0.

The GUE is applicable to chaotic quantum systems with
broken time reversal symmetry. The zeros of the Riemannz
function z(z) with large imaginary part on the critical line

Re (z)5 1
2 are known to possess characteristics of such a

system@5#, and according to the so-called GUE hypothesis
~see, e.g., Ref@6#! in the infinite imaginary part limit, the
joint distribution of the zeros is locally equal to the joint
distribution of the eigenvalues of the GUE. The eigenvalues
and zeros must be scaled so that their mean spacing takes on
the same fixed value, 1/r say. In a large-scale numerical
computation by one of the present authors@6#, involving
over 107 zeros121 ign aboutn51020 ~heren labels the zeros
along the critical line!, the PDFp(s) has been determined
empirically and compared withp(s) for the GUE. Excellent
agreement is found.

In this Rapid Communication a statistic for the infinite
GUE, which is very similar to the spacing between consecu-
tive levels, is calculated exactly, and compared to that ob-
tained empirically from the data of@6# for $gn%. This statistic
is the PDFSnn(t) for the spacing between nearest neighbor
levels~note that each eigenvalue has two neighbors but only
one nearest neighbor!.

Below the following results are established. The PDF
Snn(t) for the infinite GUE with mean eigenvalue spacingp
is given in terms of a Fredholm determinant by

Snn~ t !52
d

dt
det~12K1!, ~3!
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whereK1 is the integral operator on~2t,t! with kernel

K1~x,y!:5
Axy

2~x2y!
@Jb11/2~x!Jb21/2~y!

2Jb11/2~y!Jb21/2~x!# ~4!

@Ja(x) denotes the Bessel function# andb51. Furthermore,

det~12K1!5 exp E
0

prts1~2t8!

t8
dt8 ~5a!

and so

Snn~ t !52
s1~2prt !

t
exp E

0

prts1~2t8!

t8
dt8 ~5b!

~here the mean eigenvalue spacing is 1/r!, wheres1(s) sat-
isfies the nonlinear equation

~ss19!214~2b21ss182s1!$~s18!2

1@b2~b22ss181s1!
1/2#2%50, ~6!

with b51, subject to the boundary condition

s1~s!;2
~s/2!2b11

G~ 1
21b!G~ 3

21b!
, as s→0, ~7!

with b51 ~the parameterb is included for later conve-
nience!. Note that withb50 Eq. ~6! reduces to Eq.~2!.

We have computed many terms of the power series ex-
pansion of Eq.~6! abouts50 with b51 and subject to Eq.
~7!. Comparison with the analogous expansion of Eq.~1!
~see, e.g.,@1#! shows thatp(t)2~ 12!Snn(t)5O(t7), which in
qualitative terms, says that very small spacings between con-
secutive eigenvalues will most likely be nearest neighbor
spacings~the factor of12 accounts for the fact that the nearest

neighbor occurs with equal probability to the left or to the
right!. The solution of Eq.~6! with b51 was computed nu-
merically @the power series solution toO(s11) was used to
computes1(1) ands18(1) which were used as initial condi-
tions# and substituted in Eq.~5b! with r51 to give the theo-
retical prediction forSnn(t) in the infinite GUE, which was
then compared withSnn(t) determined empirically from the
data of @6# for $gn%. Three sets of 106 consecutive zeros
1
21 ign were analyzed, the data sets starting at zero number
N151, N2510611, andN3510201143, 782, 842, respec-
tively. The quantitydn8 :5min(dn ,dn21), wheredn :5(gn11

2gn)rn with rn5(1/2p)ln(gn /2p) denoting the smoothed
local density of zeros at121 ign , was calculated and a histo-
gram constructed for the number of values out of the 106

tested that fell into the intervals@(k21)/20,k/20#, k
51,2,... . In Fig. 1 the corresponding empirical values of
Snn(t) at the points (k2 1

2 )/20 are plotted and compared with
the value ofSnn(t) for the infinite GUE. The convergence
towards the GUE value as the magnitude of the imaginary
part increases is evident.

For further comparison the moments ^tp&:
5*0

`tpSnn(t)dt for p51,...,10, were calculated and
compared with the empirical data according to
the law of large numbers prediction̂ tp&'^dn8

p&a :

51026(n5Na11
Na1106 dn8

p ~a51,2,3!. The results are contained in

Table I. Again the trend is towards convergence to the GUE
value. Note in particular the four figure agreement between
^t& and ^dn8&3. The PDFSnn(t) therefore provides quantita-
tive statistical evidence supporting the validity of the GUE
hypothesis, thus adding to the statistical evidence obtained in
Ref. @6# and the analytic arguments of Ref.@7#.

Our derivation of Eqs.~3!–~7! uses a recent result of Na-
gao and Slevin@8# to obtain Eq.~3!, and the theory of Tracy
and Widom@9# to obtain Eq.~6!. Nagao and Slevin consider
the random matrix ensemble with unitary symmetry defined
by the eigenvalue PDF

)
j51

N

uxj u2be2xj
2

)
1< j,k<N

uxk2xj u2, b.2 1
2 . ~8!

They prove that in the thermodynamic limit, with eachxj
scaledxj°Xj /A2N so that the bulk density is 1/p, the cor-
respondingn-level distribution is given by

FIG. 1. Comparison ofSnn(t) for the GUE~solid line! and for
106 consecutive zeros of the Riemannz function on the critical line,
starting near zero number 1~open circles!, 106 ~asterisks!, and
1020 ~filled circles!, respectively. The mean spacing between con-
secutive~eigenvalues! zeros has been normalized to unity.

TABLE I. Comparison of the moments ofSnn(t) for the GUE
~second column! and for 106 consecutive zeros of the Riemannz
function~subsequent columns! on the critical line, starting near zero
number 1, 106 and 1020respectively. The mean spacing between
consecutive~eigenvalues! zeros has been normalized to unity.

p ^tp& ^dn8
p&1 ^dn8

p&2 ^dn8
p&3

1 0.725 227 0.731 988 0.730 706 0.725 291
2 0.603 251 0.606 386 0.605 762 0.602 470
3 0.555 775 0.551 262 0.551 956 0.553 540
4 0.555 527 0.540 113 0.542 599 0.551 074
5 0.594 314 0.563 548 0.568 467 0.586 454
6 0.674 002 0.620 786 0.629 172 0.660 788
7 0.804 518 0.717 187 0.730 735 0.782 709
8 1.005 15 0.864 325 0.885 824 0.969 281
9 1.308 70 1.081 77 1.115 83 1.249 35
10 1.769 24 1.400 75 1.455 04 1.670 02
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rn~X1 ,...,Xn!5 det@K1~Xj ,Xk!# j ,k51,...,n , ~9!

whereK1(x,y) is given by Eq.~4! @for b¹Z>0, x(y),0,
x(y) in the denominator needs to be replaced byuxu(uyu);
however, below we will only consider the casebPZ>0#.

It follows from Eq. ~9! ~see, e.g., Ref.@1#! that the prob-
ability E„0;(2t,t)… of an interval (2t,t)being free of eigen-
values in the ensemble~8! is given by det(12K1). Since in
the caseb51, Eq.~8! is precisely the eigenvalue PDF of the
GUE with an eigenvalue fixed at the origin, the result~3!
follows. In fact this interpretation of Eq.~8! suggests another
derivation of Eq.~9! in the caseb51. Thus withb51, Eq.
~9! must be equal to the (n11)-level distribution of the
GUE ~see, e.g., Ref.@1#!,

rn11
GUE~X1 ,...,Xn11!5 detFsin~Xj2Xk!

p~Xj2Xk!
G
j ,k51,...,n11

, ~10!

with one of the levels,Xn11say, fixed at the origin. Setting
Xn1150 in Eq.~10! and performing Gaussian elimination so
that all entries below the first in the final column are zero
gives Eq.~9! in the caseb51.

To derive Eq.~6! we introduce the quantities

~12K1!
218r~x,y!, K1~12K1!

218R~x,y!,

R~ t,t !:5R ~11!

~the symbol8 denotes ‘‘has kernel’’! and

Q~x!:5~12K1!
21f, q:5Q~ t2!

P~x!:5~12K1!
21c, p:5P~ t2! ~12a!

u:5E
2t

t

Q~y!f~y!dy, w:5E
2t

t

P~y!c~y!dy,

where

f~x!5Ax/2Jb11/2~x!, c~x!5Ax/2J
b21/2

~x! ~12b!

„note thatK1(x,y)5@f(x)c(y)2f(y)c(x)#/(x2y)….
Using the facts thatf andc satisfy a pair of coupled first

order differential equations, and that forb odd ~even!,
f(x) is even~odd! andc(x)is odd~even!, from the theory of
@9# we can deduce that the following equations hold:

tR52~2b1u2w!pq1t~p21q2!12~pq!2, ~13!

tq85~2b1u2w!q1tp, ~14!

tp852tq2~2b1u2w!p, ~15!

~ tR!85p21q2, ~16!

u852q2, w852p2. ~17!

Also, it is easy to check from the definitions that

d

dt
ln~12K1!522R. ~18!

To derive Eq.~5a! we set

s1~2t !:522tR ~19!

and integrate Eq.~18! @the factorpr in the upper terminal of
Eq. ~5! results from changing the mean eigenvalue spacing
from p to 1/r#. To derive Eq.~6! we multiply Eq.~14! by p,
multiply Eq. ~15! by q, add and use Eq.~17! to obtain

~pq!85p22q25 1
2 ~w82u8! ~20!

and consequently

pq5 1
2 ~w2u!. ~21!

Substituting Eqs.~21! and ~16! into Eq. ~13! gives

tR522b~pq!22~pq!21t~ tR!8, ~22!

which relatestR to pq. On the other hand, another equation
relating these two quantities is obtained by squaring Eq.~16!
and the first equality in Eq.~20! and subtracting:

„~pq!8…22„~ tR!8…2524~pq!2. ~23!

Solving Eq. ~22! for pq ~the negative square root is to be
taken! and (pq)8, substituting in Eq.~23! and introducing
the notation~19! gives Eq.~6!. The boundary condition~7!
follows from the fact thatR(s,s);K1(s,s) ass→0 and the
corresponding behavior ofK1(s,s) deduced from Eq.~4!.

To summarize, the exact evaluation of the PDFSnn(t) for
the spacing between nearest neighbor levels in the infinite
GUE has been given in terms of a certain solution of the
nonlinear equation~6!. This PDF can be readily calculated
from empirical eigenvalue data, so our exact evaluation pro-
vides a statistical test for the hypothesis that the data have
the distribution of the eigenvalues of a random Hermitian
matrix. Applying this test to the zeros of the Riemannz
function on the critical line, we have found further evidence
supporting the validity of the GUE hypothesis.
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